Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446884

RESUMO

Hydrogel is a versatile material that can be manipulated to achieve the desired physicochemical properties, such as stiffness, pore size, and viscoelasticity. Traditionally, these properties have been controlled through parameters such as concentration and pH adjustments. In this study, we focused on exploring the potential of hydrolyzed silk fibroin (HSF) as a molecular weight-modulating agent to control the physicochemical properties of double-composite hydrogels. We developed a synergistic dual-crosslinked hydrogel by combining ionically crosslinked silk fibroin with gellan gum (GG). The hydrolysis of silk fibroin not only enhanced its hydrophilicity but also enabled adjustments in its mechanical properties, including the pore size, initial modulus elasticity, and relaxation time. Moreover, biocompatibility assessments based on cell viability tests confirmed the potential of these hydrogels as biocompatible materials. By highlighting the significance of developing an HSF/GG dual-crosslinked hydrogel, this study contributes to the advancement of novel double-composite hydrogels with remarkable biocompatibility. Overall, our findings demonstrate the capability of controlling the mechanical properties of hydrogels through molecular weight modulation via hydrolysis and highlight the development of a biocompatible HSF/GG dual-crosslinked hydrogel with potential biomedical applications.


Assuntos
Fibroínas , Engenharia Tecidual , Fibroínas/química , Hidrogéis/farmacologia , Hidrogéis/química , Hidrólise , Peso Molecular , Seda/química
2.
ACS Omega ; 8(7): 6455-6462, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844585

RESUMO

Shape-memory polymers (SMPs) can be defined as a reversibly changing form through deformation and recovery by external stimuli. However, there remain application limitations of SMPs, such as complicated preparation processes and slow shape recovery. Here, we designed gelatin-based shape-memory scaffolds by a facile dipping method in tannic acid solution. The shape-memory effect of scaffolds was attributed to the hydrogen bond between gelatin and tannic acid, which acts as the net point. Moreover, gelatin (Gel)/oxidized gellan gum (OGG)/calcium chloride (Ca) was intended to induce faster and more stable shape-memory behavior through the introduction of a Schiff base reaction. The chemical, morphological, physicochemical, and mechanical properties of the fabricated scaffolds were evaluated, and those results showed that the Gel/OGG/Ca had improved mechanical properties and structural stability compared with other scaffold groups. Additionally, Gel/OGG/Ca exhibited excellent shape-recovery behavior of 95.8% at 37 °C. As a consequence, the proposed scaffolds can be fixed to the temporary shape at 25 °C in just 1 s and recovered to the original shape at 37 °C within 30 s, implying a great potential for minimally invasive implantation.

3.
ACS Omega ; 7(45): 41331-41340, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406493

RESUMO

The damage to retinal pigment epithelium (RPE) cells can lead to vision loss and permanent blindness. Therefore, an effective therapeutic strategy has emerged to replace damaged cells through RPE cell delivery. In this study, we fabricated injectable gellan gum (GG)/silk sericin (SS) hydrogels as a cell carrier by blending GG and SS. To determine the appropriate concentration of SS for human RPE ARPE-19, 0, 0.05, 0.1, and 0.5% (w/v) of SS solution were blended in 1% (w/v) GG solution (GG/SS 0%, GG/SS 0.05%, GG/SS 0.1%, and GG/SS 0.5%, respectively). The physical and chemical properties were measured through Fourier-transform infrared spectroscopy, scanning electron microscopy, mass swelling, and weight loss. Also, viscosity, injection force, and compressive tests were used to evaluate mechanical characteristics. Cell proliferation and differentiation of ARPE-19 were evaluated using quantitative dsDNA analysis and real-time polymerase chain reaction, respectively. The addition of SS gave GG/SS hydrogels a compressive strength similar to that of natural RPE tissue, which may well support the growth of RPE and enhance cell proliferation and differentiation. In particular, the GG/SS 0.5% hydrogel showed the most similar compressive strength (about 10 kPa) and exhibited the highest gene expression related to ARPE-19 cell proliferation. These results indicate that GG/SS 0.5% hydrogels can be a promising biomaterial for cell delivery in retina tissue engineering.

4.
Int J Biol Macromol ; 222(Pt B): 2144-2157, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216106

RESUMO

This study shows tunable stress relaxing gellan gum (GG) hydrogel for enhanced cell growth and regenerative medicine. The molecular weight and physical crosslinking density of GG were tuned and characterized with physicochemical analysis and mechanical tests. The result showed that a decrease in the molecular weight of the GG correlated with a decline in the mechanical properties but faster stress relaxing character. We also discovered that human-derived bone marrow stem cells (hBMSC) showed active viability, proliferation, and remodeling in the fast stress relaxing GG hydrogel. In particular, hBMSC showed an enhanced release profile of growth factors and exosomes (Exo) in the fast stress relaxing GG hydrogel. The secretome obtained from hBMSC embedded in hydrogel exhibited similar cytotoxicity and wound healing properties to that of secretome extracted from hBMSC cultured in a tissue culture plate (TCP) a standard culture condition. Thus, this work demonstrates the potential of fast stress relaxing GG hydrogels for medical application.


Assuntos
Células-Tronco Mesenquimais , Polissacarídeos Bacterianos , Humanos , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Hidrogéis/farmacologia , Hidrogéis/química , Osso e Ossos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...